Шаг 2 Строим уравнения регрессии Находим максимальный коэффициент детерминации (где k=1) Вычисляем нижнюю границу коэффициента детерминации достигнет своего максимума. Используя пакет STADIA определяем:
|
||||||||||||||||
|
Переменная |
k |
|||||||||||||||
|
X7 |
0.7618 |
0.7117 |
1 |
|||||||||||||
|
Х7,Х9 |
0.8118 |
0.750 |
2 |
|||||||||||||
Шаг 3
Строим уравнения регрессии
Находим максимальный коэффициент детерминации (где k=1)
Вычисляем нижнюю границу коэффициента детерминации достигнет своего максимума.
Используя пакет STADIA определяем:
Переменная
k
X7
0.7618
0.7117
1
Х7,Х9
0.8118
0.750
2
Х7,Х9,X3
0.80953
0.735
3
Процесс прекращаем поскольку, меньше таких коэффициентов для уравнений регрессии с двумя переменными.
Подробный анализ, выполненный с помощью программы “Stadia”, приведен в Приложении 1.
Граф.1
Подробные расчеты см. Приложение 1
Таким образом , из анализа исключаются все факторные признаки,
кроме Х7,X9
2. Проверить построенную модель на гетероскедастичность. Построить обобщенную модель множественной регрессии (случай гетероскедастичности остатков)
1.4 Построение и исследование новой модели регрессии.
1.4.1 Вычисление оценок коэффициентов регрессии
Регрессионная модель примет вид:
Вывод т.к. около 1, то можно считать , что связь тесная.
Проверка значимости и построение доверительных интервалов для коэффициентов регрессии
Проверим значимость уравнения регрессии:
H0:<регрессионная модель незначима>
H1:<регрессионная модель значима>
Fвычисленное=57.1
Fкритическое (0,05;2;24)=3,40 так как Fвычисленное > Fкритическое ,
то принимается гипотеза Н1 , следовательно в уравнении коэффициенты регрессии должны быть значимыми.
Проверим значимость коэффициентов регрессии
tкритическое =2.064
tвычисленное = .
коэффициент значим.
коэффициент значим
.
коэффициенты значимы, поскольку> tкритическое =2.064, < tкритическое ,
Построим доверительный интервал для коэффициентов по формуле:
где остаточная дисперсия
Используя пакет STADIA находим доверительный интервал для коэффициента при переменной Х7,Х9.
1.4.2 Построение доверительного интервала для результативного признака
Доверительный интервал для результативного признака будем строить , исходя из формулы:
,
где t-значение статистики Стьюдента при и
степенях свободы.
Построим доверительный интервал прогноза в точке , используя пакет STADIA ,находим:
Критерий ранговой корреляции Спирмена. По выборочным данным строим регрессионную модель, которую оцениваем с помощью МНК. Вычисляем регрессионные остатки: еi=уi-?i. Данные объясняющих переменных и остатки ранжируют, после чего исследуют зависимость между хi и ?i. Для этого выдвигаем гипотезу Нo: нет зависимости между объясняющей переменной и регрессионными остатками ( она равносильна гипотезе о том, что нет явления гетероскедастичности), Н?: есть зависимость, т.е. явление гетероскедастичности наблюдается. Для проверки гипотезы строится статистика, распределенная нормально с математическим ожиданием равным нулю и дисперсией равной 1: t=Rх.е ,
где Rx,e=1-6* -коэффициент ранговой корреляции Спирмена, где Di2= rang xi- rang ei .
На заданном уровне значимости ?=0.05 по таблице нормального распределения находим tкр
Если tн>t, то нулевую гипотезу отвергаем, значит есть явления гетероскеластичности, в противном случае явление гетероскедастичности наблюдаем. В случае наличия гетероскедастичности, используя ОМНК оценим
регрессию, взяв в качестве матрицы ?=
rang xi
rang ei
Di
Di2
21.3
69.2
77.9
17.1
18.4
37.9
72.2
27.5
58.2
46.2
74
43.5
18.8
59.5
52.2
65.1
60.2
2.63
84
19.8
78.7
62
104
69.3
78.9
15.1
51.5
84.98
30.58
38.42
60.34
60.22
60.79
29.82
70.57
34.51
64.73
36.63
32.84
62.64
34.07
39.27
28.46
30.27
69.04
25.42
53.13
28.00
38.79
32.04
38.58
18.51
57.62
20.80
-0.917
2.18
0.808
-5
-7.52
-17.5
7.55
-10.2
11.5
-21.7
2.23
0.909
-7.49
19.7
4.75
-10.3
11.9
10.8
-4.14
-8.63
-6.32
-13.4
-3.89
-5.4
-1.42
19.6
32
2,5
19,5
24
4,5
2,5
8,5
18
8,5
14
11
21
10
7
12,5
12,5
16
19,5
4,5
26
6
22
16
27
23
25
1
16
15
18
16
11
7
2
21
5
23
1
19
17
8
26
20
4
24
22
12
6
9
3
13
10
14
25
27
-15
-18
8
-11
-7
-2
-3
-5
-9
10
2
-7
-1
-26
-20
12
-24
-22
14
0
13
13
14
13
11
-24
-11
225
324
64
121
49
4
9
25
81
100
4
49
1
676
400
144
576
484
196
0
169
169
196
169
121
576
121
rang xi
rang ei
Di
Di2
21.3
69.2
77.9
17.1
18.4
37.9
72.2
27.5
58.2
46.2
74
43.5
18.8
59.5
52.2
65.1
60.2
2.63
84
19.8
78.7
62
104
69.3
78.9
15.1
51.5
84.98
30.58
38.42
60.34
60.22
60.79
29.82
70.57
34.51
64.73
36.63
32.84
62.64
34.07
39.27
28.46
30.27
69.04
25.42
53.13
28.00
38.79
32.04
38.58
18.51
57.62
20.80
-0.917
2.18
0.808
-5
-7.52
-17.5
7.55
-10.2
11.5
-21.7
2.23
0.909
-7.49
19.7
4.75
-10.3
11.9
10.8
-4.14
-8.63
-6.32
-13.4
-3.89
-5.4
-1.42
19.6
32
21
10
5
25
22,5
20
2,5
26
11
15
4
16
24
6,5
13
2,5
18
27
6,5
22,5
1
8
14
12
9
17
19
15
18
16
11
7
2
21
5
23
1
19
17
8
26
20
4
24
22
12
6
9
3
13
10
14
25
27
6
-8
-11
14
-7
18
-21
21
-12
14
-15
-1
16
-26
-7
-4
-6
5
-12
-6
-8
5
1
2
-5
-8
-8
36
64
121
196
49
324
441
441
144
196
225
1
256
676
49
16
36
25
144
36
64
25
1
4
25
64
64
Если явление гетероскедастичности наблюдается, то оценки, полученные с помощью МНК, являются смещенными и состоятельными. В этом случае следует использовать ОМНК для построения коэффициентов регрессии: bомнк=(?Т???X)??X Т???Y, где ? - диагональная матрица, которую необходимо оценить. Тогда оценка регрессии будет иметь вид:?=Xbомнк. Проверка на значимость уравнения регрессии осуществляется с помощью статистики , распределенной по закону Фишера -Снедокера.
FН= , где QR=(Xb)Т?-1(Хb) , Qост=(У-Хb)Т?-1(У-Хb)
Проверка на значимость коэффициентов регрессии осуществляется с помощью статистики, распределенной по закону Стьюдента.
tн= , где Sbj=? [ ( XТ?-1Х)-1] jj , ?=
Поскольку гетероскедастичности нет ,то нет необходимости применения ОМНК.
На практике можно провести примеры, когда построенная регрессионная модель оказывается значимой, дисперсии оценок этой модели малы, но модель оказывается неадекватной описываемому процессу. Причина этого может быть в наличии явления автокорреляции - это явление, заключающееся в том, что значения случайной составляющей в любом наблюдении зависит от его значений во всех других наблюдениях. Если в этом случае проанализировать поведение остатков, то зачастую можно выявить следующие тенденции:
? значения регрессионных остатков в соседних точках оказываются одного знака. В данном случае имеет место положительная автокорреляция.
? значения регрессионных остатков в соседних точках оказываются разного знака (по закономерности ). В этом случае имеет место отрицательная автокорреляция остатков.
Явление автокорреляции по поведению остатков можно выявить, если достаточна частота наблюдений. Автокорреляция выявляется с помощью статистики Дарбина- Уотсона:
d=
Если наличие автокорреляции отсутствует, то значение статистики должно быть близкой к двум. При наличии положительной автокорреляции величина d близка к нулю (меньше двух); при отрицательной автокорреляции она близка к значению 4. Вычисляют верхнюю и нижнюю границы для критического значения статистики. Возможны три ситуации:
1) Если d 2) Если d>d, то нет автокорреляции; 3) Если d В случае наличия автокорреляции ее необходимо устранить, т.к построенные оценки коэффициентов регрессии будут смещенными и состоятельными. В литературе большое внимание уделяется зависимости первого порядка между регрессионными остатками: =+, где <1; -случайные величины, обладающие свойствоми: М=0; D=, cov[,] =0 при ij т.е. относительно мы имеем линейную регрессионную гомоскедастичную модель. Наша цель- построить ковариационную матрицу вектора регрессионных остатков, найти ее оценку и построить модель ОМНК. Исследуем случайные величины : М= М=0 D=, т.е. дисперсия регрессионных остатков постоянная величина. = Таким образом, указали вид ковариационной матрицы вектора регрессионных остатков. Для оценки коэффициентов регрессии ОМНК необходимо построить матрицу. Используя вид можно указать . На практике величина неизвестна. Рассмотрим способом оценивания с помощью метода Кокрейна-Оркатта, который представляет собой итерационный подход, включающий следующие этапы: 1. Оценивается регрессия МНК: У=Х; 2. Вычисляются остатки e; 3. Оценивается регрессионная зависимость еот е: е=, коэффициент при е представляет оценку , 4. Строится . Используя эту матрицу оцениваем регрессионную зависимость У от Х ОМНК. 5. Повторно вычисляют епроцесс возвращается к пункту 3. Процесс заканчивается, когда значения на последнем и предпоследнем этапах будут примерно одинаковыми. Таким образом указан один из способов построения матрицы , в случае зависимости регрессионных остатков первого порядка. Используя матрицу можно построить вектор оценок коэффициентов регрессии ОМНК, проверить на значимость уравнение регрессии, построить доверительные интервалы по вышеописанным формулам Проверим наличие автокорреляции в модели. Составим расчетную таблицу: d==5998.124/2736.788= 2.191 Поскольку d>2 то альтернатива отсутствию автокорреляции будет существование отрицательной автокорреляции. По таблице находим для n=27, k=2 (число объясняющих переменных) и уровня значимости a=0,05 : d1=1.24 и d2 = 1.56 Т.к. 4 – d= 1.809 > d2=1.56 следовательно автокорреляции нет. Наша цель- построить ковариационную матрицу вектора регрессионных остатков, найти ее оценку и построить модель ОМНК. Исследуем случайные величины : М= М=0 D=, т.е. дисперсия регрессионных остатков постоянная величина. = Таким образом, указали вид ковариационной матрицы вектора регрессионных остатков. Для оценки коэффициентов регрессии ОМНК необходимо построить матрицу. Используя вид можно указать . На практике величина неизвестна. Рассмотрим способом оценивания с помощью метода Кокрейна-Оркатта, который представляет собой итерационный подход, включающий следующие этапы: 6. Оценивается регрессия МНК: У=Х; 7. Вычисляются остатки e; 8. Оценивается регрессионная зависимость еот е: е=, коэффициент при е представляет оценку , 9. Строится . Используя эту матрицу оцениваем регрессионную зависимость У от Х ОМНК. 10. Повторно вычисляют епроцесс возвращается к пункту 3. Процесс заканчивается, когда значения на последнем и предпоследнем этапах будут примерно одинаковыми. Таким образом указан один из способов построения матрицы , в случае зависимости регрессионных остатков первого порядка. Используя матрицу можно построить вектор оценок коэффициентов регрессии ОМНК, проверить на значимость уравнение регрессии, построить доверительные интервалы по вышеописанным формулам. Поскольку автокорреляции нет, то нет необходимости применения ОМНК. № п/п Y1 X5 X7 X10 X14 X17 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 9.26 9.38 12.11 10.81 9.35 9.87 8.17 9.12 5.88 6.30 6.22 5.49 6.50 6.61 4.32 7.37 7.02 8.25 8.15 8.72 6.64 8.10 5.52 9.37 13.17 6.67 6.68 6.22 10.02 8.16 6.78 6.48 10.44 7.65 8.77 7.00 11.06 9.02 13.28 9.27 6.70 6.69 9.42 7.24 5.39 5.61 5.59 6.57 6.54 4.23 5.22 18.00 11.03 0.78 0.75 0.68 0.70 0.62 0.76 0.73 0.71 0.69 0.73 0.68 0.74 0.66 0.72 0.68 0.77 0.78 0.78 0.81 0.79 0.77 0.78 0.72 0.79 0.77 0.80 0.71 0.79 0.76 0.78 0.62 0.75 0.71 0.74 0.65 0.66 0.84 0.74 0.75 0.75 0.79 0.72 0.70 0.66 0.69 0.71 0.73 0.65 0.82 0.80 0.83 0.70 0.74 1.37 1.49 1.44 1.42 1.35 1.39 1.16 1.27 1.16 1.25 1.13 1.10 1.15 1.23 1.39 1.38 1.35 1.42 1.37 1.41 1.35 1.48 1.24 1.40 1.45 1.40 1.28 1.33 1.22 1.28 1.47 1.27 1.51 1.46 1.27 1.43 1.50 1.35 1.41 1.47 1.35 1.40 1.20 1.15 1.09 1.26 1.36 1.15 1.87 1.17 1.61 1.34 1.22 1.45 1.30 1.37 1.65 1.91 1.68 1.94 1.89 1.94 2.06 1.96 1.02 1.85 0.88 0.62 1.09 1.60 1.53 1.40 2.22 1.32 1.48 0.68 2.30 1.37 1.51 1.43 1.82 2.62 1.75 1.54 2.25 1.07 1.44 1.40 1.31 1.12 1.16 0.88 1.07 1.24 1.49 2.03 1.84 1.22 1.72 1.75 1.46 1.60 1.47 1.38 1.41 1.39 6.40 7.80 9.76 7.90 5.35 9.90 4.50 4.88 3.46 3.60 3.56 5.65 4.28 8.85 8.52 7.19 4.82 5.46 6.20 4.25 5.38 5.88 9.27 4.36 10.31 4.69 4.16 3.13 4.02 5.23 2.74 3.10 10.44 5.65 6.67 5.91 11.99 8.30 1.63 8.94 5.82 4.80 5.01 4.12 5.10 3.49 4.19 5.01 11.44 7.67 4.66 4.30 6.62 47750 50391 43149 41089 14257 22661 52509 14903 25587 16821 19459 12973 50907 6920 5736 26705 20068 11487 32029 18946 28025 20968 11049 45893 99400 20719 36813 33956 17016 34873 11237 17306 39250 19074 18452 17500 7888 58947 94697 29626 11688 21955 12243 20193 20122 7612 27404 39648 43799 6235 11524 17309 22225 Приложение 2. № п/п Y1 цен X5 цен X7 цен X10 цен X14 цен X17 цен 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 424344454647484950515253 1,2 1,32 4,05 2,75 1,29 1,81 0,11 1,06 -2,18 -1,76 -1,84 -2,57 -1,56 -1,45 -3,74 -0,69 -1,04 0,19 0,09 0,66 -1,42 0,04 -2,54 1,31 5,11 -1,39 -1,38 -1,84 1,96 0,1 -1,28 -1,58 2,38 -0,41 0,71 -1,06 3 0,96 5,22 1,21 -1,36 -1,37 1,36 -0,82 -2,67 -2,45 -2,47 -1,49 -1,52 -3,83 -2,84 9,94 2,97 0,045 0,015 -0,055 -0,035 -0,115 0,025 -0,005 -0,025 -0,045 -0,005 -0,055 0,005 -0,075 -0,015 -0,055 0,035 0,045 0,045 0,075 0,055 0,035 0,045 -0,015 0,055 0,035 0,065 -0,025 0,055 0,025 0,045 -0,115 0,015 -0,025 0,005 -0,085 -0,075 0,105 0,005 0,015 0,015 0,055 -0,015 -0,035 -0,075 -0,045 -0,025 -0,005 -0,085 0,085 0,065 0,095 -0,035 0,005 0,03 0,15 0,1 0,08 0,01 0,05 -0,18 -0,07 -0,18 -0,09 -0,21 -0,24 -0,19 -0,11 0,05 0,04 0,01 0,08 0,03 0,07 0,01 0,14 -0,1 0,06 0,11 0,06 -0,06 -0,01 -0,12 -0,06 0,13 -0,07 0,17 0,12 -0,07 0,09 0,16 0,01 0,07 0,13 0,01 0,06 -0,14 -0,19 -0,25 -0,08 0,02 -0,19 0,53 -0,17 0,27 0 -0,12 -0,08 -0,23 -0,16 0,12 0,38 0,15 0,41 0,36 0,41 0,53 0,43 -0,51 0,32 -0,65 -0,91 -0,44 0,07 0 -0,13 0,69 -0,21 -0,05 -0,85 0,77 -0,16 -0,02 -0,1 0,29 1,09 0,22 0,01 0,72 -0,46 -0,09 -0,13 -0,22 -0,41 -0,37 -0,65 -0,46 -0,29 -0,04 0,5 0,31 -0,31 0,19 0,22 -0,07 0,07 -0,06 -0,15 -0,12 -0,14 0,43 1,83 3,79 1,93 -0,62 3,93 -1,47 -1,09 -2,51 -2,37 -2,41 -0,32 -1,69 2,88 2,55 1,22 -1,15 -0,51 0,23 -1,72 -0,59 -0,09 3,3 -1,61 4,34 -1,28 -1,81 -2,84 -1,95 -0,74 -3,23 -2,87 4,47 -0,32 0,7 -0,06 6,02 2,33 -4,34 2,97 -0,15 -1,17 -0,96 -1,85 -0,87 -2,48 -1,78 -0,96 5,47 1,7 -1,31 -1,67 0,65 -1,78 -1,11 6,96 2,87 8,63 -1,95 2,42 0,02 4,49 2,26 6,18 -1,37 6,24 1,71 3,29 -3,12 -6,29 -5,02 -6,12 -5,81 -2,84 -4,44 0,5 -3,52 -1,23 -5,08 3,26 -4,09 -5,15 -2,67 11,03 -1,52 2,59 -1,21 6,55 6,7 -2,24 -0,67 0,2 -2,63 -4,87 2,67 3,12 6,94 2,76 -0,37 -1,22 8,73 -7,11 -7,86 -10,88 0,6 -0,09 № п/п Y3 X8 X10 X15 X16 X17 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 13.26 10.16 13.72 12.85 10.63 9.12 25.83 23.39 14.68 10.05 13.99 9.68 10.03 9.13 5.37 9.86 12.62 5.02 21.18 25.17 19.40 21.0 6.57 14.19 15.81 5.23 7.99 17.50 17.16 14.54 6.24 12.08 9.49 9.28 11.42 10.031 8.65 10.94 9.87 6.14 12.93 9.78 13.22 17.29 7.11 22.49 12.14 15.25 31.34 11.56 30.14 19.71 23.56 1.23 1.04 1.80 0.43 0.88 0.57 1.72 1.70 0.84 0.60 0.82 0.84 0.67 1.04 0.66 0.86 0.79 0.34 1.60 1.46 1.27 1.58 0.68 0.86 1.98 0.33 0.45 0.74 0.03 0.99 0.24 0.57 1.22 0.68 1.00 0.81 1.27 1.14 1.89 0.67 0.96 0.67 0.98 1.16 0.54 1.23 0.78 1.16 4.44 1.06 2.13 1.21 2.20 1.45 1.30 1.37 1.65 1.91 1.68 1.94 1.89 1.94 2.06 1.96 1.02 1.85 0.88 0.62 1.09 1.60 1.53 1.40 2.22 1.32 1.48 0.68 2.30 1.37 1.51 1.43 1.82 2.62 1.75 1.54 2.25 1.07 1.44 1.40 1.31 1.12 1.16 0.88 1.07 1.24 1.49 2.03 1.84 1.22 1.72 1.75 1.46 1.60 1.47 1.38 1.41 1.39 166.32 92.88 158.04 93.96 173.88 162.30 88.56 101.16 166.32 140.76 128.52 177.84 114.48 93.24 126.72 91.80 69.12 66.24 67.68 50.40 70.56 72.00 97.20 80.28 51.48 105.12 128.52 94.68 85.32 76.32 153.00 107.64 90.72 82.44 79.92 120.96 84.60 85.32 101.52 107.64 85.32 131.76 116.64 138.24 156.96 137.52 135.72 155.52 48.60 42.84 142.20 145.80 120.52 10.08 14.76 6.48 21.96 11.88 12.60 11.52 8.28 11.52 32.40 11.52 17.28 16.20 13.32 17.28 9.72 16.20 24.84 14.76 7.56 8.64 8.64 9.00 14.76 10.08 14.76 10.44 14.76 20.52 14.40 24.84 11.16 6.48 9.72 3.24 6.48 5.4 6.12 8.64 11.88 7.92 10.08 18.72 13.68 16.56 14.76 7.92 18.36 8.28 14.04 16.92 11.16 14.76 47750 50391 43149 41089 14257 22661 52509 14903 25587 16821 19459 12973 50907 6920 5736 26705 20068 11487 32029 18946 28025 20968 11049 45893 99400 20719 36813 33956 17016 34873 11237 17306 39250 19074 18452 17500 7888 58947 94697 29626 11688 21955 12243 20193 20122 7612 27404 39648 43799 6235 11524 17309 22225 Приложение 2. № п/п Y3 цен X8 цен X10 цен X15 цен X16 цен X17 цен 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 -0,44 -3,54 0,02 -0,85 -3,07 -4,58 12,13 9,69 0,98 -3,65 0,29 -4,02 -3,67 -4,57 -8,33 -3,84 -1,08 -8,68 7,48 11,47 5,7 7,3 -7,13 0,49 2,11 -8,47 -5,71 3,8 3,46 0,84 -7,46 -1,62 -4,21 -4,42 -2,28 -3,669 -5,05 -2,76 -3,83 -7,56 -0,77 -3,92 -0,48 3,59 -6,59 8,79 -1,56 1,55 17,64 -2,14 16,44 6,01 9,86 0,16 -0,03 0,73 -0,64 -0,19 -0,5 0,65 0,63 -0,23 -0,47 -0,25 -0,23 -0,4 -0,03 -0,41 -0,21 -0,28 -0,73 0,53 0,39 0,2 0,51 -0,39 -0,21 0,91 -0,74 -0,62 -0,33 -1,04 -0,08 -0,83 -0,5 0,15 -0,39 -0,07 -0,26 0,2 0,07 0,82 -0,4 -0,11 -0,4 -0,09 0,09 -0,53 0,16 -0,29 0,09 3,37 -0,01 1,06 0,14 1,13 -0,08 -0,23 -0,16 0,12 0,38 0,15 0,41 0,36 0,41 0,53 0,43 -0,51 0,32 -0,65 -0,91 -0,44 0,07 0 -0,13 0,69 -0,21 -0,05 -0,85 0,77 -0,16 -0,02 -0,1 0,29 1,09 0,22 0,01 0,72 -0,46 -0,09 -0,13 -0,22 -0,41 -0,37 -0,65 -0,46 -0,29 -0,04 0,5 0,31 -0,31 0,19 0,22 -0,07 0,07 -0,06 -0,15 -0,12 -0,14 57,32 -16,12 49,04 -15,04 64,88 53,3 -20,44 -7,84 57,32 31,76 19,52 68,84 5,48 -15,76 17,72 -17,2 -39,88 -42,76 -41,32 -58,6 -38,44 -37 -11,8 -28,72 -57,52 -3,88 19,52 -14,32 -23,68 -32,68 44 -1,36 -18,28 -26,56 -29,08 11,96 -24,4 -23,68 -7,48 -1,36 -23,68 22,76 7,64 29,24 47,96 28,52 26,72 46,52 -60,4 -66,16 33,2 36,8 11,52 -2,82 1,86 -6,42 9,06 -1,02 -0,3 -1,38 -4,62 -1,38 19,5 -1,38 4,38 3,3 0,42 4,38 -3,18 3,3 11,94 1,86 -5,34 -4,26 -4,26 -3,9 1,86 -2,82 1,86 -2,46 1,86 7,62 1,5 11,94 -1,74 -6,42 -3,18 -9,66 -6,42 -7,5 -6,78 -4,26 -1,02 -4,98 -2,82 5,82 0,78 3,66 1,86 -4,98 5,46 -4,62 1,14 4,02 -1,74 1,86 -1,78 -1,11 6,96 2,87 8,63 -1,95 2,42 0,02 4,49 2,26 6,18 -1,37 6,24 1,71 3,29 -3,12 -6,29 -5,02 -6,12 -5,81 -2,84 -4,44 0,5 -3,52 -1,23 -5,08 3,26 -4,09 -5,15 -2,67 11,03 -1,52 2,59 -1,21 6,55 6,7 -2,24 -0,67 0,2 -2,63 -4,87 2,67 3,12 6,94 2,76 -0,37 -1,22 8,73 -7,11 -7,86 -10,88 0,6 -0,09 © Все права защищены.
0.917
2.18
0.808
-5
-7.52
-17.5
7.55
-10.2
11.5
-21.7
2.23
0.909
-7.49
19.7
4.75
-10.3
11.9
10.8
-4.14
-8.63
-6.32
-13.4
-3.89
-5.4
-1.42
19.6
2.18
0.808
-5
-7.52
-17.5
7.55
-10.2
11.5
-21.7
2.23
0.909
-7.49
19.7
4.75
-10.3
11.9
10.8
-4.14
-8.63
-6.32
-13.4
-3.89
-5.4
-1.42
19.6
32
9,59141
1,88238
33,7329
6,3504
99,6004
627,502
315,063
470,89
1102,24
572,645
1,74504
70,5432
739,296
223,502
226,503
492,84
1,21
223,204
20,1601
5,3361
50,1264
90,4401
2,2801
15,8404
441,84
153,76
0,840889
4,7524
0,652864
25
56,5504
306,25
57,0025
104,04
132,25
470,89
4,9729
0,826281
56,1001
388,09
22,5625
106,09
141,61
116,64
17,1396
74,4769
39,9424
179,56
15,1321
29,16
2,0164
384,16
Посчитаем критерий Дарбина-Уотсона:
5. Устранение автокорреляции 1 – го порядка обобщенным методом наименьших квадратов.
Приложение 1
Исходные данные *
Центрированная матрица
Приложение 1
Исходные данные *
Центрированная матрица
![]()
![]()
Новости:
Поиск
Расширенный поиск